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Abstract

This paper considers the adaptability of nonlinear panel data models to multiple fixed effects.

It is motivated by the gravity equation used in international trade, where influential papers such

as Santos Silva and Tenreyro (2006) use nonlinear models with fixed effects for both importing

and exporting countries. It is also relevant for other areas of microeconomics such as labor

economics, where a wage equation might contain both worker and firm fixed effects, or industrial

organization, where knowledge diffusion equations using patent data can include citing and cited

country fixed effects. Econometric theory has mostly focused on the estimation of single fixed

effects models. This paper investigates whether existing methods can be modified to eliminate

multiple fixed effects for some specific models in which the incidental parameter problem has

already been solved in the presence of a single fixed effect. We find that it is possible to

generalize the conditional maximum likelihood approach of Rasch (1960, 1961) to include two

fixed effects for the logit, the Poisson and the Negative binomial regression models considered

by Hausman, Hall and Griliches (1984) as well as for the Gamma model. Surprisingly, Manski’s

(1987) maximum score estimator for binary response models cannot be adapted to the presence

of two fixed effects. We also look at a multiplicative form model. In that case, it is possible to

consistently estimate the parameters when there are two fixed effects with the use of a moment

condition. Monte Carlo simulations show that the conditional logit estimator presented in

this paper is less biased than other logit estimators without sacrificing on the precision. This

superiority is emphasized in small samples. An application on trade data using both the logit

and Poisson estimators further highlights the importance of properly accounting for two fixed

effects. Indeed, estimates of the gravity model parameters produced by the method presented in

this paper differ significantly from those obtained with the various estimators used in the trade

literature.



1 Introduction

The so-called fixed effects have long been recognized as a key element of econometric modeling

of panel data, and a significant literature now exists in econometric theory on the inclusion of

fixed effects in both linear and nonlinear panel data models. The developed methods have also

been put to use in various empirical studies. Many of these now include more than one fixed effect.

However, econometric theory has mostly focused on single fixed effects. The present paper attempts

to bridge part of this gap by looking at some specific nonlinear models. The empirical relevance is

demonstrated using Monte Carlo simulations and an application to international trade data.

This paper is motivated by the fixed effects gravity equation models used in international

trade.This specific area of economics is concerned with the estimation of the factors conducive to

trade between countries. The importance of using fixed effects to control for country-specific char-

acteristics has been emphasized in an influential paper by Anderson and VanWincoop (2003). Fol-

lowing this paper, many papers contributing to the gravity equation literature have included fixed

effects in the estimation strategies. For example, Helpman, Melitz and Rubinstein (2008) and San-

tos Silva and Tenreyro (2006), developed nonlinear panel data models with fixed effects for both

importing and exporting countries.

This paper investigates whether existing methods for eliminating fixed effects can be modified

to eliminate multiple fixed effects. This is not only relevant for data consisting of country-pair, but

also in a number of other areas of empirical micro-economics. For example, in a very influential

paper, Abowd, Kramarz and Margolis (1999) used matched firm-employee data to study wage

determinants of french workers. For such data sets one might want to allow for both firm and worker

fixed effects. In a similar fashion, Aaronson, Barrow and Sander (2007) and Rivkin, Hanushek and

Kain (2005) used matched data between students and teachers to study academic achievement. In

both those papers multiple fixed effects were also used.

When studying “static” linear models, fixed effects do not generally cause any problem, since

they can easily be differenced out to allow consistent estimation of the relevant parameters. How-

ever, when considering nonlinear panel data models, we encounter the well known incidental pa-

rameter problem identified by Neyman and Scott (1948).1 This has motivated a rich literature on

1The incidental parameter problem refers to the fact that in nonlinear models with a fixed number of observations
for each individual, the bias in the estimation of the fixed effects contaminates the estimates of the parameters of
interest.
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the estimation of single fixed effects nonlinear panel data models. The first model considered in

the literature is the logit model studied in Rasch (1960,1961). Manski (1987) generalized this to

develop a conditional maximum score estimator for binary response models that remains consistent

under weak assumptions on the distribution of the errors. Hausman, Hall and Griliches (1984) used

the relationship between the Poisson and multinomial distribution to solve the incidental parameter

problem in the Poisson regression model (and Negative Binomial) in the presence of a single fixed

effect. Like in the logit case, this results in a conditional likelihood approach that can be used to

consistently estimate the parameters of interest.

With a more general approach to the problem, Hahn and Newey (2004) show that when n and

T grow at the same rate, the fixed effects estimator is asymptotically biased and the asymptotic

confidence intervals are wrong. They suggest two bias correction methods (the panel jackknife and

the analytic bias correction).

The paper will proceed as follows; for each of the models mentioned above, to which we add

Gamma and a more general multiplicative form model, we describe the estimation approach de-

veloped in the literature for one fixed effect and then try to generalize it to two. When it is not

possible, we will give some intuition as to why the “usual” trick does not work. As a general

rule of thumb, whenever we needed a pair of observations for the same individual to eliminate one

fixed effect, we will need two “connected” pairs to get rid of two, in a very similar fashion as the

difference-in-differences used in the linear models. We then proceed to showing the relevance of

appropriately dealing with two fixed effects in nonlinear models using the estimators presented in

this paper. To accomplish that, we first do Monte Carlo simulations for the logit model. Finally,

we use data on trade flows between countries to test the logit and the Poisson estimators on the

gravity equation.

Given the large number of empirical applications using multiple fixed effects, these methods

are of broad applicability. Furthermore, we find that appropriately controlling for multiple fixed

effects has substantial effect on the estimated parameters of interest relative to models without

fixed effects or models inappropriately controlling for fixed effects.
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2 Multiple Fixed Effects in Nonlinear Panel Data Models

2.1 Fixed Effects in a Logit Model

The first nonlinear model we shall consider is the simple and well documented logit model. There

is a well-known application of the conditional maximum likelihood “trick” that allows us to solve

the incidental parameter problem in a logit in the presence of one fixed effect. As we will see, it is

possible to generalize this method to include two fixed effects. We begin by presenting the original

solution, following somewhat closely that of Arellano and Honoré (2001), before moving on to two

fixed effects.

For T = 2, suppose we have observations generated by:

yit = 1{xitβ + αi + εit ≥ 0} i = 1, ..., n

where for all i and t the εit are independent and have a logistic distribution conditional on xs and

the individual fixed effect α. This implies that we can express the following probability:

Pr(yi1 = 1 | xi1, xi2, αi) =
exp(xi1β + αi)

1 + exp(xi1β + αi)
. (1)

It is then easy to show that the conditional likelihood will eliminate the fixed effect such that:

Pr(yi1 = 1 | yi1+yi2 = 1, xi1, xi2, αi) (2)

=
Pr(yi1 = 1 | xi1, xi2, αi)Pr(yi2 = 0 | xi1, xi2, αi)

Pr(yi1 = 1, yi2 = 0 | xi1, xi2, αi) + Pr(yi1 = 0, yi2 = 1 | xi1, xi2, αi)

=
exp(xi1 − xi2)β

1 + exp(xi1 − xi2)β
.

We can then find an estimator for the parameter β by applying this function to all pairs of observa-

tions for a given individual, and for all individuals. This can be generalized to the case where T > 2,

and is easy enough to calculate. Note that we are conditioning on yi1 + yi2 = 1, which means that

we are using the information contained in pairs of observations where the binary indicator changed.

This important trick used here to eliminate the fixed effects is also the one used in Manski’s (1987)

maximum score estimator, which we will analyze in the next subsection. It is possible to get a
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likelihood function when T > 2, by conditioning on
∑T

t=1 yit to get the conditional distribution:

P
(
yi1, . . . , yit |

T∑
t=1

yit, xi1, . . . , xit, αi
)

=
exp(

∑T
t=1 yitxitβ)∑

(d1,...,dt)∈B exp(
∑T

t=1 dtxitβ)
(3)

with B being the set of all sequences of zeros and ones that have
∑T

t=1 dit =
∑T

t=1 yit ( [6]). Note

that this implies that
∑T

t=1 yit is a sufficient statistic for αi. We will see later that this sufficient

statistic is also very useful in the Poisson model.

We now show that a similar trick can be applied in the case of two fixed effects in a logit model

and provide an analogous result. Suppose the observations are now given by

yij = 1{xijβ + µi + αj + εij ≥ 0} i = 1, . . . , n, j = 1, . . . , n (4)

where εij follows a logit distribution.2 Then, by applying the method used above to eliminate one

fixed effect, we can write the following probabilities:3

Pr(ylj = 1 | x, µ, α, ylj + ylk = 1) =
exp

[
(xlj − xlk)β + αj − αk

]
1 + exp

[
(xlj − xlk)β + αj − αk

] (5)

and

Pr(yij = 1 | x, µ, α, yij + yik = 1) =
exp

[
(xij − xik)β + αj − αk

]
1 + exp

[
(xij − xik)β + αj − αk

] . (6)

As can be seen, the two previous equations no longer depend on the µ fixed effects. However, they

are still expressed in terms of the αs. We now try to find a conditional probability that does not

depend on the latter. First, we notice that we now have a logit with (xij − xik) as explanatory

variable and (αj − αk) as a fixed effect. We can therefore apply the trick a second time; so we

compare it to another pair of observations with the same “fixed effect”. Using both equations (5)

and (6), and defining

c ≡ {ylj + ylk = 1, yij + yik = 1}
2Here, and for all models presented, it is easier to imagine countries trading with each other. This can be seen as

a panel where n = T . Then yij refers to the observation involving the country of the ith row and the country of the
jth column.

3Throughout the paper, x will refer to the vector of all xs.
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we can now write the following conditional probability:

Pr(ylj = 1 | x, µ, α, ylj + ylk = 1, yij + yik = 1, yij + ylj = 1)

=
Pr(ylj = 1, yij + ylj = 1 | x, µ, α, c)

Pr(yij + ylj = 1 | x, µ, α, c)

=
Pr(ylj = 1 | x, µ, α, c)Pr(yij = 0 | x, µ, α, c)

Pr(ylj = 1, yij = 0 | x, µ, α, c) + Pr(ylj = 0, yij = 1 | x, µ, α, c)

=
exp

[
(xlj − xlk)β + αj − αk

]
exp

[
(xlj − xlk)β + αj − αk

]
+ exp

[
(xij − xik)β + αj − αk

]
=

exp
[
((xlj − xlk)− (xij − xik))β

]
1 + exp

[
((xlj − xlk)− (xij − xik))β

] . (7)

The probability no longer depends on the fixed effects, hence allowing us to solve the incidental

parameter problem in the presence of two fixed effects. Indeed, we could now write a conditional

maximum likelihood function or apply the last expression to all quadruples of observations, just

like with one fixed effect. The latter being easier to implement, the function to maximize is given

by
n∑
i=1

n∑
j=1

∑
l,k∈Zij

log

(
exp

[
((xlj − xlk)− (xij − xik))β

]
1 + exp

[
((xlj − xlk)− (xij − xik))β

]). (8)

where Zij is the set of all the potential k and l that satisfy ylj + ylk = 1, yij + yik = 1, yij + ylj = 1

for the pair ij.

In the context of epidemiological studies, Hirji et al. (1987) show that you can use a similar

recursive conditioning to eliminate what they call nuisance parameters and speed up computations.

These parameters are not fixed effects and do not relate to the incidental parameters problem; they

are simply normal covariates (like the x variables in our model) that one needs to control for but

for which the effect on the dependent variable is not of interest (for example, the constant). It is

therefore interesting to see that such conditioning can also be used on parameters of a different

nature, like fixed effects. Moreover, they do not present an economic application and do not compare

the performance of their estimator to that of other estimators used in the economics literature, both

things that we will look at in the next sections.

To assess the accuracy of this two fixed effects logit estimator and compare it to other logit

estimators, we ran some Monte Carlo simulations. The results are presented in the third section.

We now move on to a related model where we achieve a different outcome.
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2.2 Manski’s maximum score estimator

Manski (1987) developed a consistent maximum score estimator for binary response models allowing

for individual fixed or random effects in panel data. This estimator, unlike its predecessors4 remains

strongly consistent under very weak assumptions on the disturbances. We want to investigate the

possibility of generalizing this estimator to the case where we have multiple fixed effects. The

conditional maximum score estimator is similar in fashion to the estimator of the logit model.

Indeed, it is also applied to a binary response model and uses pairs of observations for the same

individual where the value of the indicator variable differs. However, unlike the logit conditional

maximum likelihood, this estimator does not generalize to the case with two fixed effects, even

under a stronger set of assumptions.

In Manski’s original paper, the model has the form:

P (yit = 1 | xi1, xi2, αi) = Fi(xitβ + αi) t = 1, 2

That the distribution F depends on i is the first assumption in Manski (1987). It requires the

disturbance to be stationary conditional on the identity of the panel member but does not restrict

it to be the same across individuals.

Manski’s key result resides in his first lemma:

Lemma M 1.

xi2β > xi1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) > P (yi1 = 1 | xi1, xi2, αi) (9)

xi2β = xi1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) = P (yi1 = 1 | xi1, xi2, αi)

xi2β < xi1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) < P (yi1 = 1 | xi1, xi2, αi)

So if we condition on yi1 + yi2 = 1, then we get:

P (yi2 = 1 | yi1 + yi2 = 1, xi1, xi2, αi)


> 1/2 if (xi2 − xi1)β > 0

= 1/2 if (xi2 − xi1)β = 0

< 1/2 if (xi2 − xi1)β < 0

4See for example Andersen (1970)
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This is like Manski (1975) , so it is possible to use Maximum Score. This first lemma allows him

to develop, under some identification conditions, a consistent estimator by maximizing for b the

sample analog of the following equation:

H(b) ≡ E[sgn((xi2 − xi1)b)(yi2 − yi1)] (10)

for the observations where yi1 6= yi2.

Unfortunately, this approach cannot be generalized in such a way to generate an equivalent

Lemma for the case of multiple fixed effects panel data models. Indeed, following a similar line of

thoughts as for the logit case presented earlier, we would hope to adapt Lemma 1 by applying the

same trick twice.

Suppose we have the following model:

P (yij = 1 | x, µ, α) = F (xijβ + µi + αj) i, j = 1, . . . , n

We now restrict F to be the same for all observations. In other words, all the disturbances are drawn

from the same distribution. This is more restrictive than Manski’s assumption, but still allows for

an interesting range of models. We will show that even under this stricter set of assumptions, we

cannot generalize this estimator to the case with two fixed effects. To do so we first apply the trick

once to eliminate µi and get:

P (yij = 1 | yij + yik = 1,x, µ, α)


> 1/2 if (xij − xik)β + αj − αk > 0

= 1/2 if (xij − xik)β + αj − αk = 0

< 1/2 if (xij − xik)β + αj − αk < 0

This looks similar to the logit once we had used the conditioning a first time: explanatory variable

(xij − xik) and fixed effect αj − αk. However, to apply the trick again, we would need P (yij = 1 |

yij + yik = 1,x, µ, α) to have the form F
(
(xij − xik)β + αj − αk

)
where F is a CDF. Yet, this does

not hold: we can’t attest that this probability is always increasing. Therefore, we cannot apply

Manski a second time: Manski’s Maximum Score estimator cannot be adapted to the presence of

two fixed effects, even under a stronger set of assumptions.
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There is fundamental difference between this estimator and the logit that explains the opposite

results. The logit can accommodate two fixed effects because using the known method once to deal

with the first fixed effect gives us another logit, therefore allowing to apply said method a second

time. This does not hold for Manski’s maximum score estimator.

In general, models that can accommodate two fixed effects will have this feature: the model

resulting from the use of the conditioning in one dimension is one for which we know the incidental

parameter problem can be solved with the conditional approach. For example, conditioning once

for the logit returns a logit. As we will see in the next subsection, conditioning once for the Poisson

returns a logit (multinomial distribution). However, conditioning once for the maximum score

returns a model with unknown properties.

2.3 Fixed Effects in a Poisson Model

We now turn to another model where the conditional maximum likelihood approach allows to

deal with multiple fixed effects: the Poisson regression model. Here, as in the logit case, we can

successfully solve the incidental parameter problem in the presence of two fixed effects. This is of

particular interest since this model has become common in the trade application that motivates

this study, namely the gravity equation literature.

Hausman, Hall and Griliches (1984) solved the incidental parameter problem for the Poisson

model with one fixed effect. They used a conditional maximum likelihood approach to develop what

is now called the fixed effect Poisson estimator. Lancaster (2002) proved that there really wasn’t an

incidental parameter problem in the Poisson model with one fixed effect. Indeed, he showed that

in this case, the conditional and unconditional maximum likelihood were equivalent However, this

equivalence cannot be established for a Poisson model with two fixed effects.5 In fact, we show in

the appendix that the incidental parameter problem remains in the case of two fixed effects (i.e the

likelihood function is not maximized at the true parameter value). We therefore need a conditional

approach, much like that of Hausman, Hall and Griliches (1984). Once again, this is especially

important for trade applications, like the gravity model, that frequently use Poisson with two fixed

effects. This section will go as follows; first we will recall the original fixed effect Poisson estimator.

5Lancaster (2002) showed the absence of an incidental parameter problem whenever the likelihood function could be
factored into two orthogonal parts, one containing the parameters of interest and the other the incidental parameters.
Such a decomposition cannot be done for the Poisson with two fixed effects.
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Then, we will adapt it to deal with two fixed effects.

To illustrate the general idea behind conditional likelihood in the context of a Poisson model

with one fixed effect, let us review the straightforward case where there are only two observations

for each individual :

yit ∼ Pois(exp(xitβ + αi)).

It follows from the relationship between Poisson and binomial distribution, that the distribution of

yi1 given that yi1 + yi2 = K is given by

yi1 ∼ bi
(
K,

exp(xi1β)

exp(xi1β) + exp(xi2β)

)

which does not involve the fixed effects, therefore allowing to consistently estimate β. With that

in mind, we now present the fixed effect Poisson estimator of Hausman, Hall and Griliches (1984).

Suppose we have observations yit distributed Poisson with parameter λit = exp(xitβ +αi +α0)

on n individuals observed for T periods. The parameters αi represent individual fixed effects and

α0 is the overall intercept so that we have E(eαi) = 1. Therefore,

Pr(yit | xit, αi) =
e−λit(λit)

yit

yit!
. (11)

The incidental parameter problem prevents us from consistently estimating the parameters in (11)

by maximum likelihood. To solve this problem, Hausman, Hall and Griliches (1984) follow Andersen

(1970, 1972) and condition on the sum
∑

t yit. This is a sufficient statistic for αi. Just as in

the simpler binomial case, it is well known that the distribution of yit conditional on
∑

t yit is a

multinomial distribution [13]:

Pr(yi1, . . . , yiT |
∑

yit) =
Pr
(
yi1, . . . , yi,T−1,

∑T
t=1 yit −

∑T−1
t=1 yit

)
Pr(

∑
yit)

(12)

=

e−
∑
t λit

∏
t λ
yit
it∏

t(yit!)

e−
∑
t λit

(∑
t λit

)∑
t yit(∑

t yit

)
!

=

(∑
t yit
)
!∏

t(yit!)

∏
t

[
λit∑
t λit

]yit
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We can simplify the term on the right as

exitβ+µi∑
t e
xitβ+µi

=
exitβ∑
t e
xitβ

which no longer depends on the fixed effects and can therefore be used to produce a likelihood

function to consistently estimate the parameter β. Note the similarity with the logit specification

developed earlier. We want to know if it is possible, as it was for the logit, to find a sufficient

statistic for the panel data model with two fixed effects. This would allow us to write the conditional

distribution of the yits as an expression that does not include the fixed effects. In other words, we

want an equivalent to equation (12).

Now suppose we have a balanced panel of n individuals where each observation is distributed

Poisson in the following way:

yij ∼ Pois(exp(xijβ + µi + αj)) (13)

where µi and αj are individual fixed effects, xij is a vector of explanatory variables and β a

vector of parameters to be estimated. We will define the mean of the distribution to be λij ≡

exp(xijβ + µi + αj).

To gain some intuition, let us first look at the 2× 2 case. We will then generalize to n× n. In

order to eliminate the incidental parameter problem related to the fixed effects, we need to know

the following distribution:

yij | yij + yik, ylj + ylk, yij + ylj ∼? (14)

For simplicity of notation, let us define:

yij = m0 (15)

yij + yik = m1

ylj + ylk = m2

yij + ylj = m3
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Then, we can express the desired probability as:

Pr(yij =m0 | yij + yik = m1, ylj + ylk = m2, yij + ylj = m3) (16)

=
Pr(yij = m0, yik = m1 −m0, ylj = m3 −m0, ylk = m2 −m3 +m0)

Pr(yij + yik = m1, ylj + ylk = m2, yij + ylj = m3)

=
Pr(yij = m0, yik = m1 −m0, ylj = m3 −m0, ylk = m2 −m3 +m0)∑min{m1,m3}

t=max{0,−(m2−m3)} Pr(yij = t, yik = m1 − t, ylj = m3 − t, ylk = m2 −m3 + t)

When a variable is distributed Poisson with mean λ we know that the probability this variable

takes a specific value m is given by:

f(m;λ) =
λme−λ

m!

Using this expression, let us write

fijfikfljflk =
λm0
ij e

−λij

m0!

λm1−m0
ik e−λik

(m1 −m0)!

λm3−m0
lj e−λlj

(m3 −m0)!

λm2−m3+m0
lk e−λlk

(m2 −m3 +m0)!

and

f
(t)
ij f

(t)
ik f

(t)
lj f

(t)
lk =

λtije
−λij

t!

λm1−t
ik e−λik

(m1 − t)!
λm3−t
lj e−λlj

(m3 − t)!
λm2−m3+t
lk e−λlk

(m2 −m3 + t)!

Since the variables are independently distributed, we can now express the probability in (16) as

Pr(yij =m0 | yij + yik = m1, ylj + ylk = m2, yij + ylj = m3)

=
fijfikfljflk∑min{m1,m3}

t=max{0,−(m2−m3)} f
(t)
ij f

(t)
ik f

(t)
lj f

(t)
lk

We invert to simplify the expression:

(Pr(yij =m0 | yij + yik = m1, ylj + ylk = m2, yij + ylj = m3))−1

=

∑min{m1,m3}
t=max{0,−(m2−m3)} f

(t)
ij f

(t)
ik f

(t)
lj f

(t)
lk

fijfikfljflk

=

min{m1,m3}∑
t=max{0,−(m2−m3)}

m0!

t!
λt−m0
ij

(m1 −m0)!

(m1 − t)!
λm0−t
ik

(m3 −m0)!

(m3 − t)!
λm0−t
lj

(m2 −m3 +m0)!

(m2 −m3 + t)!
λt−m0

lk

=

min{m1,m3}∑
t=max{0,−(m2−m3)}

m0!

t!

(m1 −m0)!

(m1 − t)!

(
λij
λik

)t−m0 (m3 −m0)!

(m3 − t)!
(m2 −m3 +m0)!

(m2 −m3 + t)!

(
λlj
λlk

)m0−t
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From the definition of the λs we know that:

λij
λik

=
ex
′
ijβ+µi+αj

ex
′
ikβ+µi+αk

= e(xij−xik)′β+αj−αk

and
λlj
λlk

=
ex
′
ljβ+µl+αj

ex
′
lkβ+µl+αk

= e(xlj−xlk)′β+αj−αk

and therefore,
λij
λik

λlk
λlj

= e[(xlj−xlk)′β−(xlj−xlk)′β].

Finally we can write the desired probability as:

(Pr(yij =m0 | yij + yik = m1, ylj + ylk = m2, yij + ylj = m3))−1

=

min{m1,m3}∑
t=max{0,−(m2−m3)}

m0!

t!

(m1 −m0)!

(m1 − t)!
(m3 −m0)!

(m3 − t)!
(m2 −m3 +m0)!

(m2 −m3 + t)!

·
(
e[(xlj−xlk)′β−(xlj−xlk)′β]

)t−m0

which does not depend on the fixed effects, eliminating the incidental parameter problem.

This was an example of the 2× 2 solution. Now let us look at the general n× n case. We are

looking for a sufficient statistic for the fixed effects: a statistic such that when conditioned upon,

the joint distribution of the yij will not depend on the fixed effects µi and αj . We will show that

this statistic is the vector of the sum of the columns (
∑

i yij) and the sum of the rows(
∑

j yij).

Intuitively, the method goes as follows: we first apply Hausman, Hall and Griliches (1984) to

eliminate µi. We then find ourselves in a logit “world” with fixed effect (αj − αk) and therefore

can use Rasch to eliminate (αj − αk).

First, let us write the conditional joint probability of the vector of all observations Y as

Pr(Y | r, c, α, µ, x, β) =
Pr(Y | α, µ, x, β)

Pr(r, c | α, µ, x, β)
(17)
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with

Pr(r, c | α, µ, x, β) =
∑
Y

Pr(r, c | Y, α, µ, x, β) · Pr(Y | α, µ, x, β)

=
∑
Y ′∈Q

Pr(Y ′ | α, µ, x, β) (18)

where Q is the set of all possible distribution of yij such that the sum of the rows is given by the

vector r and the sum of the columns by c. The vectors of fixed effects are given by α and µ. Define

bij ≡ min(ri −
∑

k<j yik, cj −
∑

k<i ykj). Then we can express Q as:

Q = {0 ≤ yij ≤ bij ∀i, j = 1, ..., n}.

Using this expression, we write the probability as:

Pr(Y | α, µ, x, β)∑
Y ′∈Q Pr(Y

′ | α, µ, x, β)
=

e
−

∑
i
∑
j λij

∏n
i,j=1 λ

yij
ij∏n

ij(yij !)∑
Y ′∈Q

e
−

∑
i
∑
j λij

∏n
i,j=1 λ

y′
ij
ij∏n

ij(y
′
ij !)

(19)

This is the probability of getting the distribution Y over the sum of probabilities of all possible

distributions Y ′ that have the same sum of rows and columns. This would allow us to eliminate

both fixed effects, but the sum in the denominator would be impractical to implement empirically.

Indeed, for numbers that we would find in realistic applications, such as those reflecting trade

between countries, the number of possible Y ′’s would be too large for computation. There is

however an easy way around this. To accomplish our goal, it is sufficient to compare our matrix Y

13



to one alternative distribution of the yij ’s with the same sum of rows and columns (here Y ′):

Pr(Y | α, µ, x, β)

Pr(Y | α, µ, x, β) + Pr(Y ′ | α, µ, x, β)

=

e
−

∑
i
∑
j λij

∏n
i,j=1 λ

yij
ij∏n

ij(yij !)

e
−

∑
i
∑
j λij

∏n
i,j=1 λ

yij
ij∏n

ij(yij !)
+

e
−

∑
i
∑
j λij

∏n
i,j=1 λ

y′
ij
ij∏n

ij(y
′
ij !)

=
n∏

i,j=1

(y′ij !)

∏n
i,j=1 λ

yij
ij∏n

i,j=1(y′ij !)
∏n
i,j=1 λ

yij
ij +

∏n
i,j=1(yij !)

∏n
i,j=1 λ

y′ij
ij

=

n∏
i,j=1

(y′ij !)

∏n
i,j=1 e

(xijβ+µi+αj)yij∏n
i,j=1(y′ij !)

∏n
i,j=1 e

(xijβ+µi+αj)yij +
∏n
i,j=1(yij !)

∏n
i,j=1 e

(xijβ+µi+αj)y′ij

=
1

1 +
∏n
i,j=1(yij !)∏n
i,j=1(y′ij !)

e
∑
i

∑
j(xijβ+µi+αj)(y′ij−yij)

=
1

1 +
∏n
i,j=1(yij !)∏n
i,j=1(y′ij !)

(
e
∑
i

∑
j xijβ(y′ij−yij)

)(
e
∑n
i=1 µi

∑n
j=1(y′ij−yij)

)(
e
∑n
j=1 αj

∑n
i=1(y′ij−yij)

)
=

1

1 +
∏n
i,j=1(yij !)∏n
i,j=1(y′ij !)

(
e
∑
i

∑
j xijβ(y′ij−yij)

) (20)

The last equality results from the fact that
∑n

j=1(y′ij − yij) = ri − ri = 0 and
∑n

i=1(y′ij − yij) =

cj−cj = 0. This likelihood function does not depend on the fixed effects. We can therefore apply it

to 2× 2 matrices (much like in the logit case) to consistently estimate β. Thus, in a similar fashion

to the logit, it is possible to use conditional maximum likelihood in a Poisson model to derive a

consistent estimate of the parameter β when we have two fixed effects, using as sufficient statistics

the sum of rows and columns of the panel.6

To implement this estimator, select a random l and k for each observation ij to compose a small

2 × 2 matrix. Then, generate a second matrix (Y ′) that has the same sum of columns and rows.

6Note that if the use of the Poisson maximum likelihood estimator for one fixed effect is not limited to observations
distributed Poisson, this is not necessarily true for this two fixed effect equivalent. Indeed, if we know by consistency
of maximum likelihood estimators that our function is maximized at the true value of β when we have a Poisson
distribution, we cannot prove consistency for other models (for example a multiplicative model such as the one
illustrated in the next subsection). This is simply because equation (20) does not have an analytic solution for the
value of β that maximizes it.
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For each pair ij, the procedure can be repeated T times. Using this, minimize

T∑
t=1

n∑
i=1

n∑
j=1

log

(
1 +

yij !yik!ylj !ylk!)

y′ij !y
′
ik!y
′
lj !y
′
lk!

(
exijβ(y′ij−yij)+xikβ(y′ik−yik)+xljβ(y′lj−ylj)+xlkβ(y′lk−ylk)))

We now show that this procedure can also be applied to other somewhat similar models.

2.4 Fixed Effects in Negative Binomial and Gamma Models

Some other models, more or less related to the Poisson regression model, can be adapted to two

fixed effects using the same conditional likelihood approach seen in the previous subsection. It

is the case for the Negative Binomial and Gamma models. Indeed, we show that if we have the

following negative binomial distribution

yij ∼ NB
(
exijβ,

eµi

(1 + eµi)

eαj

((1 + eαj )

)
and can express the conditional expectation as

E[yij | xij ] =
exijβ+µi+αj

1 + eµi + eαj

then the sum of rows and the sum of columns are sufficient statistics for µi and αj . The proof is

very similar to that of the Poisson case. Indeed, equations (17) and (18) still hold and comparing

our matrix to an alternative Y ′ we get the equivalent to equation (20). We can write:

Pr(Y | α, µ, x, β)

Pr(Y | α, µ, x, β) + Pr(Y ′ | α, µ, x, β)
=

A

A+B

where

A ≡
n∏

i,j=1

Γ(yij + exijβ)

Γ(exijβ)Γ(yij + 1)

(
1 + eµi + eαj

(1 + eµi)(1 + eαj )

)exijβ( eµi+αj

(1 + eµi)(1 + eαj )

)yij
and

B ≡
n∏

i,j=1

Γ(y′ij + exijβ)

Γ(exijβ)Γ(y′ij + 1)

(
1 + eµi + eαj

(1 + eµi)(1 + eαj )

)exijβ( eµi+αj

(1 + eµi)(1 + eαj )

)y′ij
Therefore, we have
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Pr(Y | α, µ, x, β)

Pr(Y | α, µ, x, β) + Pr(Y ′ | α, µ, x, β)

=
1

1 +
∏n
i,j=1

Γ(y′ij+e
xijβ)

Γ(yij+e
xijβ)

Γ(yij+1)
Γ(y′ij+1

∏
i

(
eµi

(1+eµi )

)∑
j(y
′
ij−yij)∏

j

(
eαj

(1+eαj )

)∑
i(y
′
ij−yij)

=
1

1 +
∏n
i,j=1

Γ(y′ij+e
xijβ)

Γ(yij+e
xijβ)

Γ(yij+1)
Γ(y′ij+1

(21)

We could then apply maximum likelihood following the same procedure as for the Poisson model

to get consistent estimates of β.

Similarly, if we have a Gamma distribution such that

yij ∼ Gamma
(
exijβ,

1

eµi + eαj

)
with the following conditional expectation:

E[yij | xij ] =
exijβ

eµi + eαj

we can once again use the conditioning on the sum of rows and columns allows to eliminate the

fixed effects and apply the same conditional maximum likelihood to consistently estimate β. We

have:
Pr(Y | α, µ, x, β)

Pr(Y | α, µ, x, β) + Pr(Y ′ | α, µ, x, β)
=

C

C +D

where

C ≡
n∏

i,j=1

(eµi + eαj )e
e
xijβ 1

Γ(exijβ)
ye
xijβ−1
ij e−yij(e

µi+eαj )

and

D ≡
n∏

i,j=1

(eµi + eαj )e
e
xijβ 1

Γ(exijβ)
y′e

xijβ−1
ij e−y

′
ij(e

µi+eαj )
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Therefore,

Pr(Y | α, µ, x, β)

Pr(Y | α, µ, x, β) + Pr(Y ′ | α, µ, x, β)

=
1

1 +
∏n
i,j=1

(yij
y′ij

)exijβ−1
e
∑
ij(yij−y′ij)(eµi+e

αj )

=
1

1 +
∏n
i,j=1

(yij
y′ij

)exijβ−1
e
∑
i e
µi

∑
j(yij−y′ij)+

∑
j e
αj

∑
i(yij−y′ij)

=
1

1 +
∏n
i,j=1

(yij
y′ij

)exijβ−1
(22)

We could then apply maximum likelihood following the same procedure as for the Poisson model

to get consistent estimates of β. We conjecture that other homologous distribution could also be

similarly adapted to the presence of two fixed effects.

2.5 Fixed Effects in Multiplicative Form

Finally, it is possible to deal with two fixed effects in the simpler, but useful, class of models in

multiplicative form. Note that these models can be particularly pertinent when looking at gravity

equations. In this case, we are looking for a moment condition that does not depend on the fixed

effects. Much in the spirit of the difference-in-differences and the conditional likelihood, it is possible

here to do pairwise comparisons and eliminate the fixed effects.

Suppose we have a balanced panel of n individuals where each observation is given by:

E[yij | xij ] = exijβ+µi+αj (23)

where µi and αj are individual fixed effects, xij is a vector of explanatory variables and β a vector

of parameters to be estimated. We define the residuals as:

εij = yij − E[yij | xij ].

We want to find a moment condition that does not depend on the fixed effects. By multiplying

by e−xijβ, we can write

yije
−xijβ = eµi+αj + εije

−xijβ. (24)

17



Similarly,

yik = exikβ+µi+αk + εik

implies

exikβ = yike
−µi−αk − εike−µi−αk . (25)

Multiplying (24) by (25) we get:

yije
−xijβ+xikβ =eµi+αj (yike

−µi−αk − εike−µi−αk) + εije
−xijβ(yike

−µi−αk − εike−µi−αk) (26)

=yike
αj−αk − εikeαj−αk + εije

−xijβ−µi−αk(yik − εik).

Doing the same operations with ylj and ylk, we get

ylje
−xljβ+xlkβ = ylke

αj−αk − εlkeαj−αk + εlje
−xljβ−µl−αk(ylk − εlk). (27)

Combining (26) and (27), we get:

yikylje
−xljβ+xlkβ − ylje−xljβ+xlkβεik + ylje

−xljβ+xlkβ−xijβ−µi−αjεij(yik − εik)

= ylkyije
−xijβ+xikβ − yije−xijβ+xikβεlk + yije

−xijβ+xikβ−xljβ−µl−αjεlj(ylk − εlk).

Taking the conditional expectation, we get the following moment condition:

E[yikylje
−xljβ+xlkβ | x] = E[ylkyije

−xijβ+xikβ | x]

which does not depend on the fixed effects. This allows us to write the unconditional moment

condition:

E
[
(yikylj − ylkyije(xik−xij+xlj−xlk)β)(xik − xij + xlj − xlk)

]
= 0 (28)

We could then use equation (28) to develop a GMM consistent estimator for β, adding this

model to the class including logit, Poisson, Negative Binomial, and Gamma, that can successfully

produce consistent estimates in the presence of two fixed effects.
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3 Monte Carlo Simulations

In this section, we present Monte Carlo evidence to support the multiple fixed effects estimators

developed in this paper. For this, we focus on the logit estimator given by the maximization of

equation (8). The simulations will compare that estimator to a regular logit, ignoring the fixed

effects, and a logit estimating all the fixed effects (putting in dummies). Recall that this last

estimator is subject to the incidental parameter problem.

To account for different possible features of the data, this comparison will be made for four

different designs. All of these designs are applied to the estimation of the following model:

yij = 1{x′ijβ + µi + αj + εij ≥ 0} i = 1, . . . , n, j = 1, . . . , n

where xij is a vector of five explanatory variables7 drawn from a standard normal distribution and

the error term εij is drawn from a logistic distribution. The first design has no fixed effects (µi =

αj = 0 ∀i, j). The second design has fixed effects drawn from a standard normal distributions

uncorrelated with the explanatory variables. In both these first two designs, β1 = 1 and β2 = β3 =

β4 = β5 = 0. The third design has fixed effects correlated with the first explanatory variables.

More specifically, x1 = rndn + α + η where rndn is a standard normal and α and η are the same

fixed effects as in the second design. To illustrate how this affects the coefficient on this variable

differently, we now also have β2 = 1. For these simulations to stay as close as possible to a data

application, such as the one presented in the next section, these first three designs do not have

resampling of the xs in each replication. However, since it is more common in Monte Carlo studies

to have resampling, the fourth and last design replicates the second design, but with resampling

of the data. Each design is estimated for n = 136 and for a sample half that size. These are

both standard size ranges for trade studies. Whenever fixed effects are estimated, the coefficients

are truncated in order to insure convergence. The results from a 1000 replications are given in

Tables 1 through 4. For each estimator considered, we report the median bias, the median absolute

deviation (MAD), the mean bias, and the root mean squared error (RMSE) for all five coefficient

estimates.

Using the median absolute deviation as the measure of the precision and looking at the median

7We chose to keep five variables to have simulations as close as possible to the application of the next section.
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Table 1: Design 1

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 0.0001 0.0107 0.0002 0.0155

β2 -0.0004 0.0068 -0.0003 0.0103
β3 -0.0002 0.0077 -0.0002 0.0108
β4 -0.0002 0.0074 -0.0001 0.0109
β5 0.0003 0.0072 0.0003 0.0109

Logit FE β1 0.0187 0.0209 0.0186 0.0290
β2 -0.0012 0.0126 -0.0003 0.0186
β3 0.0007 0.0126 0.0005 0.0194
β4 0.0003 0.0122 -0.0001 0.0190
β5 0.0007 0.0130 0.0001 0.0185

Conditional Logit β1 0.0007 0.0159 0.0011 0.0226
β2 -0.0008 0.0128 -0.0002 0.0188
β3 0.0008 0.0129 0.0005 0.0193
β4 0.0002 0.0118 -0.0002 0.0189
β5 0.0006 0.0129 0.0001 0.0184

Small sample: n = 68
Logit β1 0.0027 0.0208 0.0025 0.0306

β2 -0.0006 0.0134 0.0000 0.0212
β3 -0.0007 0.0136 -0.0006 0.0207
β4 -0.0005 0.0148 0.0003 0.0218
β5 -0.0005 0.0148 -0.0003 0.0220

Logit FE β1 0.0392 0.0420 0.0392 0.0604
β2 0.0020 0.0268 0.0006 0.0393
β3 0.0005 0.0254 0.0002 0.0377
β4 0.0004 0.0253 0.0005 0.0392
β5 -0.0021 0.0256 -0.0017 0.0380

Conditional Logit β1 0.0031 0.303 0.0038 0.0459
β2 0.0027 0.0272 0.0005 0.0386
β3 -0.0002 0.0276 0.0005 0.0376
β4 0.0010 0.0251 0.0013 0.0388
β5 -0.0024 0.0252 -0.0016 0.0373

Design 1 has no fixed effects and the true coefficients are as follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.

20



Table 2: Design 2

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 -0.2448 0.2448 -0.2455 0.2490

β2 0.0032 0.0222 0.0014 0.0332
β3 0.0018 0.0222 0.0003 0.0321
β4 0.0006 0.0218 0.0003 0.0324
β5 0.0005 0.0217 0.0002 0.0327

Logit FE β1 0.0201 0.0225 0.0207 0.0320
β2 -0.0005 0.0134 -0.0004 0.0204
β3 -0.0009 0.0138 -0.0010 0.0204
β4 0.0003 0.0140 -0.0005 0.0200
β5 0.0003 0.0137 0.0007 0.0208

Conditional Logit β1 0.0019 0.0174 0.0021 0.0252
β2 -0.0001 0.0139 -0.0002 0.0209
β3 -0.0012 0.0139 -0.0011 0.0207
β4 0.0000 0.0138 -0.0006 0.0199
β5 0.0001 0.0142 0.0005 0.0210

Small sample: n = 68
Logit β1 -0.2408 0.2408 -0.2414 0.2492

β2 -0.0007 0.0337 0.0001 0.0495
β3 -0.0024 0.0319 -0.0018 0.0466
β4 0.0005 0.0336 0.0004 0.0492
β5 -0.0024 0.0341 -0.0018 0.0434

Logit FE β1 0.0403 0.0439 0.0402 0.0635
β2 0.0006 0.0287 0.0008 0.0427
β3 -0.0002 0.0284 0.0008 0.0410
β4 0.0003 0.0297 -0.0007 0.0429
β5 -0.0034 0.0283 -0.0018 0.0434

Conditional Logit β1 0.0005 0.0325 0.0019 0.0493
β2 0.0000 0.0302 0.0013 0.0426
β3 0.0006 0.0276 0.0013 0.0401
β4 -0.0022 0.0298 -0.0008 0.0437
β5 -0.0029 0.0279 -0.0020 0.0432

Design 2 has fixed effects drawn from a random normal uncorrelated with the x’s and the true coefficients are as

follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.
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Table 3: Design 3

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 0.4986 0.4986 0.4987 0.4992

β2 -0.0917 0.0917 -0.0915 0.0929
β3 -0.0112 0.0121 -0.0114 0.0166
β4 0.0016 0.0087 0.0016 0.0127
β5 0.0083 0.0105 0.0083 0.0155

Logit FE β1 0.0266 0.0283 0.0256 0.0384
β2 0.0241 0.0257 0.0244 0.0366
β3 -0.0013 0.0168 -0.0016 0.0243
β4 -0.0007 0.0152 -0.0006 0.0236
β5 -0.0002 0.0159 -0.0001 0.0242

Conditional Logit β1 0.0025 0.0202 0.0014 0.0306
β2 0.0002 0.0196 0.0006 0.0296
β3 -0.0007 0.0172 -0.0012 0.0250
β4 -.0003 0.0163 0.0000 0.0249
β5 -0.0005 0.0164 0.0005 0.0251

Small sample: n = 68
Logit β1 0.4918 0.4918 0.4951 0.4974

β2 -0.0902 0.0902 -0.0899 0.0972
β3 -0.0102 0.0203 -0.0119 0.0315
β4 0.0008 0.0211 0.0011 0.0294
β5 0.0102 0.0218 0.0108 0.0316

Logit FE β1 0.0491 0.0521 0.0504 0.0769
β2 0.0552 0.0585 0.0538 0.0807
β3 -0.0027 0.0349 -0.0010 0.0512
β4 0.0014 0.0342 0.0005 0.0503
β5 -0.0023 0.0346 -0.0007 0.0513

Conditional Logit β1 -0.0011 0.0416 0.0011 0.0613
β2 0.0042 0.0434 0.0045 0.0632
β3 -0.0024 0.0358 0.0000 0.0523
β4 0.0020 0.0367 0.0004 0.0522
β5 -0.0041 0.0334 -0.0017 0.0517

Design 3 has fixed effects correlated with x1 but not with the other explanatory variables and the true coefficients

are as follows: β1 = β2 = 1 and β3 = β4 = β5 = 0.
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Table 4: Design 4

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 -0.2455 0.2455 -0.2447 0.2479

β2 -0.0009 0.0221 -0.0008 0.0323
β3 0.0010 0.0218 0.0003 0.0328
β4 -0.0003 0.0229 -0.0003 0.0323
β5 0.0011 0.0221 0.0009 0.0326

Logit FE β1 0.0200 0.0221 0.0199 0.0309
β2 -0.0003 0.0128 -0.0003 0.0198
β3 0.0006 0.0137 0.0000 0.0208
β4 0.0021 0.0143 0.0016 0.0207
β5 0.0005 0.0126 0.0008 0.0204

Conditional Logit β1 0.0015 0.0163 0.0008 0.0242
β2 0.0008 0.0134 -0.0001 0.0202
β3 0.0004 0.0144 -0.0002 0.0212
β4 0.0016 0.0142 0.0014 0.0207
β5 0.0005 0.0138 0.0006 0.0206

Small sample: n = 68
Logit β1 -0.2447 0.2447 -0.2430 0.2493

β2 -0.0013 0.0327 0.0002 0.0487
β3 0.0011 0.0350 0.0010 0.0501
β4 -0.0015 0.0341 -0.0012 0.0501
β5 0.0045 0.0330 0.0019 0.0469

Logit FE β1 0.0403 0.0449 0.0410 0.0637
β2 0.0021 0.0306 0.0021 0.0438
β3 -0.0012 0.0275 0.0003 0.0404
β4 0.0017 0.0274 0.0005 0.0409
β5 0.0026 0.0288 0.0020 0.0431

Conditional Logit β1 -0.0011 0.0340 0.0016 0.0490
β2 0.0012 0.0304 0.0016 0.0436
β3 0.0009 0.0275 0.0010 0.0402
β4 0.0004 0.0260 0.0007 0.0403
β5 0.0033 0.0283 0.0023 0.0429

Design 4 has fixed effects drawn from a random normal uncorrelated with the x’s, there is resampling of the x’s

and the true coefficients are as follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.
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bias 8 we see that for all designs, the conditional logit presented in this paper has smaller bias

without sacrificing on the precision. As expected, sample size matters, both for the bias and the

precision. Indeed, the median absolute deviation is approximately twice as large in the small sample

for all three estimators in all designs. Moreover, while for the logit estimating the fixed effects,

cutting the sample by half about doubles the median bias on the positive coefficient in all designs,

it has no significant impact on the median bias for the conditional logit. Except in the first design,

which has no fixed effects, the regular logit is severely biased, especially when the fixed effects are

correlated with the explanatory variable. Design 1 shows that wrongly assuming that there are

fixed effects when there are non can lead to biased estimates when using a logit estimating fixed

effects, but not when using the conditional logit presented in this paper. Comparing the second

and third designs, we observe that when the fixed effects are correlated with one of the explanatory

variables, not only does it increase the bias on the coefficient of that variable for the logit estimating

fixed effects, but it also causes bias on the other positive coefficient. Indeed, we see that β1 has a

median bias of 0.0266 compared to 0.0201 and β2 a median bias of 0.0241 (in design 3). This is

amplified in the small sample. Still comparing design 2 and 3, we further observe that the median

bias remains similarly small for the conditional logit, showing that this estimator is equally capable

of dealing with correlated and uncorrelated fixed effects. Finally, comparing designs 2 and 4, we

see that resampling the xs in each replication has little to no effect on the results.

In short, these Monte Carlo simulations confirm that conditional logit presented in this paper is

less biased, as precise, and more robust to different fixed effects than other logit estimators. Some

preliminary simulations suggest similar results for the other estimators of section 2. We now move

on to applying some of these estimators to trade data.

4 Application: Gravity equation and the extensive margins of

trade

Understanding how different trade barriers influence trade flows is key when one wants to study

the impact of distance, trade agreements, and other trade frictions. To do that, economists have

been using the gravity equation for over 50 years. As Bernard et al. (2007) put it, ”the gravity

equation for bilateral trade flows is one of the most successful empirical relationships in international

8We are always mostly discussing results for the positive coefficient, since that is where the action takes place.
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economics”. The gravity equation was first applied to aggregate trade. As its name suggests, it

was initially motivated by the Newtonian theory of gravitation (bilateral trade should be positively

related to the size of countries, as measured by their GDP, and negatively related to their distance).

It now has a plethora of microeconomic foundations. More recent work has emphasized the role

of extensive margin adjustments in understanding the variations of aggregate trade flows9 and

has derived gravity equations for these extensive margin adjustments (see for example Bernard,

Redding and Schott (2011) and Mayer, Melitz and Ottaviano (2012) ).

4.1 Data

For this application, we use the CEPII data (both the BACI and Gravity datasets) for 2005.

This trade database is widely used, as in Keith Head and Thierry Mayer’s work. We illustrate

the estimation of two-way fixed effects using data on bilateral trade and including importer and

exporter fixed effects for a single year. The year 2005 was chosen based on data availability but

results are similar for other years. After merging the bilateral trade data with data on country

characteristics such as distance, common border or colonial status, we obtain a balanced panel of

211 countries that account for the majority of world trade.

Table 5: Summary Statistics

Panel A
Trade Trade1 Trade3 Trade5

% zeros 44.1729 51.2999 58.0749 61.7513

Panel B
Range Mean Median Std. Dev.

pn if Trade=1 [1,4941] 273.738 20 647.315
dni [6,208] 117.237 120 50.5608
dnj [8,208] 117.237 114 55.9579

pn is the number of products (defined at the HS 6-digit level) traded.
Trade = 1 if pn > 0, otherwise 0.
Trade1 = 1 if pn > 1, otherwise 0.
Trade3 = 1if pn3, otherwise 0.

Trade5 = 1 if pn > 5, otherwise 0.

dni(j): number of countries the importer (exporter) imports from (exports to).

9Trade frictions impact aggregate trade flows both through the amount each firm exports (the intensive margins)
and the number of firms exporting (the extensive margin). Note that the extensive margin can also refer to the
number of products exported.
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Among these 211 countries, about 44% of unilateral trade flows are zeros. This is line with what

Helpman, Melitz and Rubinstein find for a sample of 158 countries. If we restrict the definition

positive trade for flows of more than one product, we see that the number of zeros exceeds 50%

(and more for three or five products). This restriction is used as a robustness check in the logit

estimation. This prominence of zeros in international trade further motivates the use of econometric

models that can adequately deal with zeros.

Among countries that do trade, we see that the product number ranges from 1 to 4,94110 ,

with a mean of 274 products, but a median of 20. Approximately 12% of positive trade flows are

only composed of 1 product while only 26% of trade flows have more than 150 products. Finally,

countries import from and export to 117 other countries on average.

4.2 Logit

There are many ”zeros and ones” relationships in trade and the logit is very widely used. In the

context of the gravity equation literature, the logit is most commonly used to study the extensive

margins of trade in heterogeneous firms models. In an influential paper, Helpman, Melitz and

Rubinstein (2008) try to improve on traditional estimates of gravity equation by accounting for

both firm heterogeneity (in a Melitz (2003) framework) and the frequently forgotten zero trade

flows. To do this, they use a two-stage procedure, where the first stage consists in estimating the

probability that a country trades with another. Although they use a probit with importer and

exporter fixed effects, we can argue that a logit would be more appropriate. Indeed, a probit with

multiple fixed effects suffers from the incidental parameter problem and therefore the estimates

are biased. In a paper estimating the Chaney (2008) model with French firm-level data, Crozet

and Koenig (2010) also use the probability of exporting as a first stage in their empirical strategy.

More specifically, they run a logit with firm and import country-year fixed effects to disentangle

the elasticity of trade barriers on the intensive and extensive margins.

The following application shows that papers like Helpman, Melitz and Rubinstein (2008) and

Crozet and Koenig (2010), as well as any other that uses a similar framework, should use the

conditional logit to properly account for the multiple fixed effects. Indeed, estimates can differ

10There are 5,017 HS 6-digit products. Note also that, not surprisingly, the two countries that trade the largest
number of products (4,941) are the US and Canada.
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significantly. We write the probability of country j exporting to country i as

Prob[Tradeij ] = β0+β1 ln(Dij) + β2Borderij + β3Legalij + β4Languageij (29)

+ β5Colonyij + β6Currencyij + β7RTAij + µi + αj + εij

whereDij is the simple distance between country i’s and country j’s most populated cities, Borderij

is a dummy that takes the value 1 if i and j share a border, Legalij is a dummy that takes the value

1 if the two countries have the same legal system,Languageij is a dummy that takes the value 1 if

i and j have the same official language, Colonyij is a dummy that takes the value 1 if i and j were

ever in a colonial relationship, Currencyij is a dummy that takes the value 1 if the two countries

use the same currency, RTAij is a dummy that takes the value 1 if i and j are in a regional trade

agreement, and, finally, µi and αj are respectively importer and exporter fixed effects. The results

are presented in Table 6.

Table 6: Logit results (benchmark)

Variables OLS with FE Logit Logit with FE Conditional Logit

Distance -0.1116 -0.6491 -1.2146 -0.2282
(0.0028) (0.0169) (0.0329) (0.0461)

Border -0.0765 0.0620 -0.4194 1.4751
(0.0159) (0.1606) (0.2424) (0.2743)

Legal 0.0314 0.4098 0.2662 0.2989
(0.0044 ) (0.0247) (0.0422) (0.0650)

Language 0.0756 -0.4588 0.7870 0.9452
(0.0056) (0.0283) (0.0597) (0.0824)

Colonial ties 0.0377 3.5425 0.8699 1.9481
(0.0149) (0.3251) (0.4086) (0.5377)

Currency 0.0540 -0.5732 0.5458 0.0331
(0.0198) (0.1386) (0.2055) (0.0066)

RTA -0.0959 2.2365 1.3113 1.4140
(0.0082) (0.1120) (0.1529) (0.1788)

These results are for Prob[Trade = 1] where Trade = 1 when the number of products traded is greater than 0.
OLS with FE refers to a simple linear probability model with fixed effects. The results in the second column are for
the regular logit ignoring the fixed effects, the results in the third column are for the logit estimating all the fixed

effects and finally, the results in the fourth column are for the estimator presented in this paper.

Standard errors clustered at ij level (allowing for importer and exporter correlation).

The results for β1
11 differ greatly between estimators, more than what is expected when looking

11In what follows we mostly discuss results for the coefficient on distance, because it is generally the most talked
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at the Monte Carlo simulations. Both estimators being relatively precise, this difference is puzzling,

but suggests that distance might have a smaller impact on the probability of exporting than what

traditional estimates indicate. Of course, caution should be exercised when comparing the results

from this application with those of the Monte Carlo simulations since it is not clear how the

data relates to the distributional assumptions made in the latter. Note that the conditional logit

estimated effect of distance on the probability of exporting is closer to that produced by the linear

probability model than that of the logit estimating the fixed effects.

Generally, the estimated effects of the other variables on the probability of exporting differ for

the conditional logit and the logit estimating the fixed effects, but this difference, unlike that for

distance, is much closer to what the Monte Carlo simulations suggested. One notable exception

is the effect of a common border. Indeed, like the probit in Helpman, Melitz and Rubinstein

(2008), the logit with fixed effects produces a surprising negative effect of sharing a border on the

probability of trading. However, the conditional logit’s positive estimate suggests that this result

might be due to the inconsistency of the estimator. Note that the conditional logit is the only one

of the four estimators where all estimated coefficients match their expected sign.

As a robustness check and to make sure that none of these estimators were strongly influenced

by one outlier country, they were each calculated dropping each country in succession. The results

are all very similar. Defining the dependent variable as “0” or “1” can give a heavy weight to

relatively small trade flows: a country pair trading one product gets the same dependent variable

value as a country pair trading 1,000 products. To test the robustness of the estimators to that

issue, we recalculate all of them using three different definitions of positive trade (more than one

product, more than three, and more than five). The results are presented in Table 7.

As predicted, considering trade as positive only when the number of products exported is

greater than one increases the impact of distance on the probability of exporting. Accounting

for a rough measure of trade flow size suggests that to trade many products, countries do have

to be closer. The effect of distance becomes more and more negative as we increase the number

of zeros by changing the Trade variable. This is true for all estimators except the regular logit.

This could be because, as the Monte Carlo simulations illustrate, the bigger the coefficient (in

absolute value) the bigger the bias. Though respective coefficients for both the conditional logit

about trade barrier. Border is also commonly discussed, but as it is not significant in our estimations, it is of lesser
interest.
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Table 7: Logit results (robustness check)

Variables OLS Logit Logit with FE Conditional Logit

Panel A: Trade1 Distance -0.1185 -0.6389 -1.4553 -0.2502
(0.0028) (0.0163) (0.0371) (0.0492)

Border -0.0517 0.3069 -0.1719 1.6626
(0.0170) (0.1542) (0.2532) (0.3545)

Legal 0.0225 0.3283 0.2721 0.3055
(0.0043 ) (0.0242) (0.0440) (0.0731)

Language 0.0945 -0.4194 0.9819 1.1447
(0.0054) (0.0284) (0.0638) (0.0942)

Colonial ties 0.0491 3.5133 1.1530 2.2784
(0.0155) (0.2759) (0.3703) (0.5831)

Currency 0.0334 -0.6519 0.6564 0.0372
(0.0205) (0.1315) (0.2062) (0.0086)

RTA -0.0524 2.1052 1.2354 1.6153
(0.0084) (0.0931) (0.1402) (0.1675)

Panel B: Trade3 Distance -0.1207 -0.6184 -1.7427 -0.2751
(0.0028) (0.0159) (0.0428) (0.0505)

Border -0.0142 0.5755 0.2205 1.7963
(0.0178) (0.1512) (0.2772) (0.4537)

Legal 0.0196 0.2644 0.3879 0.3772
(0.0042 ) (0.0243) (0.0472) (0.0833)

Language 0.1027 -0.3710 1.0679 1.2772
(0.0052) (0.0290) (0.0683) (0.0989)

Colonial ties 0.0517 3.1438 1.1043 2.1905
(0.0160) (0.3251) (0.3315) (0.5520)

Currency 0.0235 -0.5948 1.0211 0.0407
(0.0208) (0.1271) (0.2249) (0.0085)

RTA 0.0065 2.0604 1.2449 1.8341
(0.0086) (0.0812) (0.1389) (0.1673)

Panel C: Trade5 Distance -0.1165 -0.5965 -1.8686 -0.2788
(0.0028) (0.0158) (0.0463) (0.0535)

Border 0.0100 0.6822 0.4508 1.9881
(0.0179) (0.1460) (0.2817) (0.4265)

Legal 0.0151 0.2328 0.4026 0.3838
(0.0041 ) (0.0246) (0.0495) (0.0928)

Language 0.1104 1.2253 0.7870 1.4356
(0.0051) (0.0296) (0.0728) (0.0898)

Colonial ties 0.0538 3.0461 1.0601 1.9623
(0.0165) (0.1843) (0.3205) (0.7479)

Currency 0.0166 -0.5604 1.2330 0.0372
(0.0208) (0.1260) (0.2449) (0.0092)

RTA 0.0448 2.0147 1.2473 1.9366
(0.0086) (0.0747) (0.1405) (0.1840)

These results are for Prob[Trade1 = 1] where Trade1 = 1 when the number of products traded is greater than 1.

Similarly for Trade3 (greater than 3) and Trade5 (greater than 5).Standard errors clustered at ij level.
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and the logit estimating fixed effects move in the same direction, they are getting farther apart,

thus emphasizing our original concern about their large difference. As a final robustness check, we

have done the same calculations with different measures of distance (i.e distance between capital

cities, distance weighted by population, CES distance weighted by population). It does not affect

the results significantly.

The large difference between estimators, especially between the conditional logit and the logit

estimating the fixed effects, shows the importance of properly accounting for multiple fixed effects.

On the one hand, all the results suggest that the impact of distance on the probability of exporting

could be smaller than what we thought. On the other hand, however, this large difference can be

cause for concern. Indeed, its magnitude is not in line with the Monte Carlo simulations. Therefore,

it might indicate that the model is misspecified. If, for example, different countries had different

β1 or if distance was in fact interacted with something else, then both estimators would give an

average β1. Since each gives different weights to the same observations, this could explain why

the estimates differ so much. It could then imply that the true β1 is quite different from all the

estimates. As a preliminary check, we relaxed the functional form assumptions on distance by using

non-parametric dummies for quartiles of the distance distribution. The results did not suggest any

problem and were very much in line with the original results presented in Tables 6 and 7. Be that

as it may, and whether or not the model is misspecified, this application illustrates the pertinence

of computing the conditional logit estimator for two fixed effects.

4.3 Poisson

The Poisson maximum likelihood estimator is very widely used in international trade, particularly

so in the gravity equation literature since Santos Silva and Tenreyro (2006)’s influential paper.

Although often applied to a continuous variable (for example trade flows), we focus here on the

count data application. Indeed, while the Poisson maximum likelihood estimator with one fixed

effect can be implemented for a continuous dependent variable, the same cannot be said for the

conditional Poisson with two fixed effects developed in this paper. This does not mean that there

isn’t a wide variety of count-data cases where we can use it.

In the gravity equation literature, the study of the extensive margin provides a good example

of count data to which we can apply a Poisson estimator. Hummels and Klenow (2005) use the
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number of products as a measure of the extensive margin of trade and find that it accounts for about

60 percent of the greater exports of large economies. However, they do use a count-data model but

rather the log of the extensive margin in a linear regression. Bernard et al. (2007) also use the

number of products as part of the measure of the extensive margin of trade (the other part being

the number of firms exporting) in their multiproduct firm model. They show that adjustments on

the product margin have a great impact on aggregate trade flows, thus highlighting the importance

of properly measuring it. When firm-level data is available, one can also use count-data models

on the number of destination countries for each firm to estimate destination-specific fixed cost of

exporting, as in Eaton, Kortum and Kramarz (2011) .

The following application shows that papers like Hummels and Klenow (2005) and Bernard et

al. (2007), as well as any other that uses a similar framework, should use the conditional Poisson

to properly account for the multiple fixed effects. Indeed, estimates can differ significantly. We

estimate the following model:

Pnij ∼ Poisson(exp(β0 + β1 ln(Dij) + β2Borderij + β3Legalij + β4Languageij

+ β5Colonyij + β6Currencyij + β7RTAij + µi + αj) (30)

where Pnij is the number of 6-digit HS products county j exports to country i and the other

variables are as defined before. The results are presented in Table 8.

Once again, properly accounting for the multiple fixed effects by using the conditional Poisson

estimator developed in this paper produces significantly different estimates of the gravity equation.

Results are in line with the literature, though perhaps a little smaller in absolute value than what is

found in papers like Helpman, Melitz and Rubinstein (2008) and Santos Silva and Tenreyro (2006).

That might be due to the larger number of countries used here or on the count data specification

(these other papers look at continuous trade flows). Focusing on the distance coefficient, we see that

the two OLS estimates and the Poisson follow the same ordering and relative size generally found in

the literature (see for example Santos Silva and Tenreyro (2006)). The significantly smaller distance

elasticity found with the Poisson Pseudo-Maximum-Likelihood approach advertised by Santos Silva

and Tenreyro (2006), has been the subject of some debate. Table 8 indicates that this might be

due to the use of a Poisson estimator that does not appropriately deal with importer and exporter

fixed effects. Indeed, the coefficient found with the conditional Poisson estimator is much closer to

31



Table 8: Poisson results

Estimator OLS FE OLS FE Poisson Poisson FE Conditional Poisson
Dependent variable ln(Pnij) ln(1 + Pnij) Pnij Pnij Pnij

Distance -0.9214 -0.6232 -0.4106 -0.5528 -0.7845
(0.0132) (0.0102) (0.0199) (0.0165) (0.0047)

Border 0.5009 0.7206 0.3079 -0.1741 0.5231
(0.0736) (0.0760) (0.0715) (0.0612) (0.1874)

Legal 0.1598 0.0850 -0.0419 0.2113 0.2406
(0.0165) (0.0130 ) (0.0346) (0.0202) (0.0194)

Language 0.6414 0.5201 -0.2032 0.3387 0.8116
(0.0247) (0.0183) (0.0434) (0.0353) (0.0898)

Colonial ties 0.6824 0.6869 1.4207 0.4615 0.6485
(0.0617) (0.0699) (0.0749) (0.0553) (0.1409)

Currency 0.2070 -0.1512 0.2030 -0.2331 0.0580
(0.0830) (0.0737) (0.0916) (0.0728) (0.0061)

RTA 0.3919 0.9574 1.2591 0.2363 0.3615
(0.0296) (0.0294) (0.0456) (0.0368) (0.0370)

Note that the OLS in the first column does not include the “zero” trade flows.

Standard errors clustered at ij level (allowing for importer and exporter correlation).

more standard results. The same holds for the coefficients on the other variables.

Since the Poisson estimate can be sensitive to the distance measure used, as a robustness check

we computed all estimators for different measures of distance. All results were very similar.

5 Conclusion

This paper looked at estimators of nonlinear panel data models with multiple fixed effects. There

is an abundance of empirical methods applying two fixed effects in nonlinear models. However,

current estimators are subject to the incidental parameters problem. Although many methods

have been developed to address this problem in models with a single fixed effect, very little has

been done for the cases with two or more fixed effects. Attempting to fill this important gap,

we developed methods to appropriately deal with two fixed effects for a broad class of nonlinear

models.

In general, we still use the conditional maximum likelihood based on Rasch (1960, 1961). If with

one fixed effect it suffices to condition on the sum of the observations in one dimension (typically,

for one individual, the sum of yit over time), with two fixed effects we condition in both dimensions
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(for one importer i, the sum of yij for all exporters j; for one exporter j, the sum of yij over all

importers i). This approach allows us to consistently estimate the parameters of interest for the

logit, Poisson, Negative binomial and Gamma models with two fixed effects. However, we found

that if the same conditioning can be used on Manski’s maximum score estimator with a single fixed

effect, the method fails when there are two. That estimator cannot be generalized to the case of

two fixed effects. For the more general multiplicative form model with two fixed effects, we used a

slightly different approach. We developed a moment condition that does not rely on either of the

two fixed effects to give us a consistent estimator.

We showed that the conditioning method that is the core of this paper performs well in recovering

the true parameters in Monte Carlo studies. Indeed, we found that the conditional logit presented

in this paper is less biased, as precise, and more robust to different fixed effects than other logit

estimators. We also showed that this same procedure yields quite different estimated coefficients

from methods subject to the incidental parameters problem in applications with actual trade data.

That is true when applying both the logit and Poisson models to gravity-type equations with

importer and exporter fixed effects.The coefficients estimated by our procedure are typically closer

to those estimated using OLS.

The methods developed in this paper have broad applicability and significant impact when

used. Our applications highlight the importance of appropriately controlling for multiple fixed

effects in nonlinear panel data models for recovering the parameters of the underlying relationships

of interest.

The work is however not over. We still need to investigate the asymptotic properties of the

estimators developed in this paper. For this, we plan to use the results for panels with one fixed

effects where n and T grow at the same rate. We are also working on the censored regression model

for which the one fixed effect case was solved by Honoré (1992) and Honoré and Powell (1994) .

Finally, we want to expand the data application to a broader range of models.
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A Appendix

We show here the existence of the incidental parameter problem for the simple 2× 2 model where

the fixed effects sum up to zero. In this case, the log-likelihood function is given by:

`(α, η, b) =y11(b0 + x11b1 + α+ η)− exp(b0 + x11b1 + α+ η) + y12(b0 + x12b1 + α− η)

− exp(b0 + x12b1 + α− η) + y21(b0 + x21b1 − α+ η)− exp(b0 + x21b1 − α+ η)

+ y22(b0 + x22b1 − α− η)− exp(b0 + x22b1 − α− η)

We first maximize with respect to the fixed effects to find the two first order conditions:

∂`(·)
∂α

=− exp(α)
[

exp(η) exp(b0 + x11b1) + exp(−η) exp(b0 + x12b1)
]

+ exp(−α)
[

exp(η) exp(b0 + x21b1) + exp(−η) exp(b0 + x22b1)
]

+ (y11 + y12 − y21 − y22)

(31)

∂`(·)
∂η

=− exp(η)
[

exp(α) exp(b0 + x11b1) + exp(−α) exp(b0 + x21b1)
]

+ exp(−η)
[

exp(α) exp(b0 + x12b1) + exp(−α) exp(b0 + x22b1)
]

+ (y11 − y12 + y21 − y22)

(32)

Adding (31) and (32) we get

2y11 − 2y22 − 2 exp(α) exp(η) exp(b0 + x11b1) + 2 exp(−α) exp(−η) exp(b0 + x22b1) = 0

which can be rewritten as

− exp(α)2 exp(η)2 exp(b0 + x11b1) + (y11 − y22) exp(α) exp(η) + exp(b0 + x22b1) = 0

This allows us to solve for exp(α) exp(η) to get:

exp(α) exp(η) =
(y22 − y11)±

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

−2 exp(b0 + x11b1)
(33)
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Similarly we can get

exp(−α) exp(−η) =
(y22 − y11)±

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

2 exp(b0 + x22b1)
(34)

Because both equations (33) and (34) must be positive, we can determine the sign in front of the

square root. The term in the square root is larger than (y22−y11). Therefore, the square root must

be subtracted from the numerator of equation (33) and added in equation (34).

Now, if we subtract (32) from (31), we get

2y12 − y21 − 2 exp(α) exp(−η) exp(b0 + x12b1) + exp(−α) exp(η) exp(b0 + x21b1) = 0

which can be rewritten as

− exp(α)2 exp(−η)2 exp(b0 + x12b1) + (y12 − y21) exp(α) exp(η) + exp(b0 + x21b1) = 0

This in turn allows us to write

exp(α) exp(−η) =
(y21 − y12)±

√
(y12 − y21)2 + 4 exp(b0 + x12b1) exp(b0 + x21b1)

−2 exp(b0 + x12b1)
(35)

and

exp(−α) exp(η) =
(y21 − y12)±

√
(y12 − y21)2 + 4 exp(b0 + x12b1) exp(b0 + x21b1)

2 exp(b0 + x21b1)
(36)

We can do a similar analysis as for equations (33) and (34) to determine the unknown sign in the

numerator of equations (35) and (36). It will reveal that the square root must be subtracted in the

numerator of equation (35) and added in equation (36).

Now taking the derivative of the objective function with respect to b1 we find:

∂`(·)
∂b1

=y11x11 + y12x12 + y21x21 + y22x22

− x11 exp(b0 + x11b1) exp(α) exp(η)− x12 exp(b0 + x12b1) exp(α) exp(−η)

− x21 exp(b0 + x21b1) exp(−α) exp(η)− x22 exp(b0 + x22b1) exp(−α) exp(−η)
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Using the envelope theorem and substituting in equations (33)−(36) we can write:

∂`(·)
∂b

=y11x11 + y12x12 + y21x21 + y22x22

+
1

2
x11

[
(y22 − y11)−

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

]
+

1

2
x12

[
(y21 − y12)−

√
(y12 − y21)2 + 4 exp(b0 + x12b1) exp(b0 + x21b1)

]
− 1

2
x21

[
(y21 − y12) +

√
(y12 − y21)2 + 4 exp(b0 + x12b1) exp(b0 + x21b1)

]
− 1

2
x22

[
(y22 − y11) +

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

]
(37)

To show that this expression is not maximized at the true β1, we will first show that if we could

simply replace the ys by their expected value, equation (37) would indeed be equal to zero. We will

then look at the expected value of equation (37) to find that Jensen’s inequality causes us to either

overestimate or underestimate the parameter of interest, depending on some values of the xs.

Let us evaluate equation (37) when replacing the ys by their expected value12 and assuming b1

is the true value. To do that, first define:

sqrt11−22 ≡
√

(exp(b0 + x11b1) exp(α) exp(η) + exp(b0 + x22b1) exp(−α) exp(−η))2
]

sqrt12−21 ≡
√

(exp(b0 + x12b1) exp(α) exp(η) + exp(b0 + x21b1) exp(−α) exp(−η))2
]

We then have:

∂`(·)
∂b

= exp(b0 + x11b1) exp(α) exp(η)x11 + exp(b0 + x12b1) exp(α) exp(−η)x12

+ exp(b0 + x21b1) exp(−α) exp(η)x21 + exp(b0 + x22b1) exp(−α) exp(−η)x22

+
1

2
x11

[
(exp(b0 + x22b1) exp(−α) exp(−η)− exp(b0 + x11b1) exp(α) exp(η))− sqrt11−22

+
1

2
x12

[
(exp(b0 + x21b1) exp(−α) exp(−η)− exp(b0 + x12b1) exp(α) exp(η))− sqrt12−21

− 1

2
x21

[
(exp(b0 + x21b1) exp(−α) exp(−η)− exp(b0 + x12b1) exp(α) exp(η)) + sqrt12−21

− 1

2
x22

[
(exp(b0 + x22b1) exp(−α) exp(−η)− exp(b0 + x11b1) exp(α) exp(η)) + sqrt11−22

12e.g. y11 = exp(α) exp(η) exp(b0 + x11b1)
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This simplifies to

∂`(·)
∂b

= exp(b0 + x11b1) exp(α) exp(η)x11 + exp(b0 + x12b1) exp(α) exp(−η)x12

+ exp(b0 + x21b1) exp(−α) exp(η)x21 + exp(b0 + x22b1) exp(−α) exp(−η)x22

−
[

exp(b0 + x11b1) exp(α) exp(η)x11 + exp(b0 + x12b1) exp(α) exp(−η)x12

+ exp(b0 + x21b1) exp(−α) exp(η)x21 + exp(b0 + x22b1) exp(−α) exp(−η)x22

]
=0

Hence, if the expectation of the function in (37) was equivalent to evaluating the function at the

expectation, the likelihood would be maximized at the true parameter value. However, we know

by Jensen’s inequality that this is not true13. Indeed, if E[1
2x11(y22 − y11)] = 1

2x11E[y22 − y11], we

have

E[
1

2
x11

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)] (38)

≥ 1

2
x11

√
(E[y11 − y22])2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

if x11 is positive, and,

E[
1

2
x11

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)] (39)

≤ 1

2
x11

√
(E[y11 − y22])2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

if x11 is negative. Rewriting equation (37) as

∂`(·)
∂b

=y11x11 + y12x12 + y21x21 + y22x22

+
1

2
(x11 − x22)(y22 − y11)− 1

2
(x11 + x22)

√
(y11 − y22)2 + 4 exp(b0 + x11b1) exp(b0 + x22b1)

+
1

2
(x12 − x21)(y21 − y12)− 1

2
(x12 + x21)

√
(y12 − y21)2 + 4 exp(b0 + x12b1) exp(b0 + x21b1)

and using the results from equations (38) and (39), we can conclude that

13It is not true in general at least, but could hold for some value of x or for some very specific distribution of the
x’s.
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• if (x11 + x22 > 0) and (x12 + x21 > 0) then

E[
∂`(·)
∂b1

∣∣
β
] < 0

• if (x11 + x22 < 0) and (x12 + x21 < 0) then

E[
∂`(·)
∂b1

∣∣
β
] > 0

• but if (x11 + x22 < 0) and (x12 + x21 > 0) or (x11 + x22 > 0) and (x12 + x21 < 0) then it

depends on the relative size of the different variables and parameters.

This shows that a Poisson model with two fixed effects does suffer from the incidental parameter

problem and confirms the necessity of using the conditional estimator developed in the present

paper.
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